Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Front Immunol ; 13: 997343, 2022.
Article in English | MEDLINE | ID: covidwho-2325367

ABSTRACT

Repeated vaccination against SARS-CoV-2 increases serological response in kidney transplant recipients (KTR) with high interindividual variability. No decision support tool exists to predict SARS-CoV-2 vaccination response to third or fourth vaccination in KTR. We developed, internally and externally validated five different multivariable prediction models of serological response after the third and fourth vaccine dose against SARS-CoV-2 in previously seronegative, COVID-19-naïve KTR. Using 20 candidate predictor variables, we applied statistical and machine learning approaches including logistic regression (LR), least absolute shrinkage and selection operator (LASSO)-regularized LR, random forest, and gradient boosted regression trees. For development and internal validation, data from 590 vaccinations were used. External validation was performed in four independent, international validation cohorts comprising 191, 184, 254, and 323 vaccinations, respectively. LASSO-regularized LR performed on the whole development dataset yielded a 20- and 10-variable model, respectively. External validation showed AUC-ROC of 0.840, 0.741, 0.816, and 0.783 for the sparser 10-variable model, yielding an overall performance 0.812. A 10-variable LASSO-regularized LR model predicts vaccination response in KTR with good overall accuracy. Implemented as an online tool, it can guide decisions whether to modulate immunosuppressive therapy before additional active vaccination, or to perform passive immunization to improve protection against COVID-19 in previously seronegative, COVID-19-naïve KTR.


Subject(s)
COVID-19 , Kidney Transplantation , Humans , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Vaccines , Vaccination
2.
Trials ; 24(1): 213, 2023 Mar 22.
Article in English | MEDLINE | ID: covidwho-2262440

ABSTRACT

BACKGROUND: Immunosuppression after kidney transplantation is mainly guided via plasma tacrolimus trough level, which cannot sufficiently predict allograft rejection and infection. The plasma load of the non-pathogenic and highly prevalent torque teno virus (TTV) is associated with the immunosuppression of its host. Non-interventional studies suggest the use of TTV load to predict allograft rejection and infection. The primary objective of the current trial is to demonstrate the safety, tolerability and preliminary efficacy of TTV-guided immunosuppression. METHODS: For this purpose, a randomised, controlled, interventional, two-arm, non-inferiority, patient- and assessor-blinded, investigator-driven phase II trial was designed. A total of 260 stable, low-immunological-risk adult recipients of a kidney graft with tacrolimus-based immunosuppression and TTV infection after month 3 post-transplantation will be recruited in 13 academic centres in six European countries. Subjects will be randomised in a 1:1 ratio (allocation concealment) to receive tacrolimus either guided by TTV load or according to the local centre standard for 9 months. The primary composite endpoint includes the occurrence of infections, biopsy-proven allograft rejection, graft loss, or death. The main secondary endpoints include estimated glomerular filtration rate, graft rejection detected by protocol biopsy at month 12 post-transplantation (including molecular microscopy), development of de novo donor-specific antibodies, health-related quality of life, and drug adherence. In parallel, a comprehensive biobank will be established including plasma, serum, urine and whole blood. The date of the first enrolment was August 2022 and the planned end is April 2025. DISCUSSION: The assessment of individual kidney transplant recipient immune function might enable clinicians to personalise immunosuppression, thereby reducing infection and rejection. Moreover, the trial might act as a proof of principle for TTV-guided immunosuppression and thus pave the way for broader clinical applications, including as guidance for immune modulators or disease-modifying agents. TRIAL REGISTRATION: EU CT-Number: 2022-500024-30-00.


Subject(s)
Kidney Transplantation , Torque teno virus , Adult , Humans , Tacrolimus/adverse effects , Kidney Transplantation/adverse effects , Quality of Life , Immunosuppression Therapy , Graft Rejection/diagnosis , Graft Rejection/prevention & control , Immunosuppressive Agents/adverse effects
3.
Ther Drug Monit ; 2022 Aug 09.
Article in English | MEDLINE | ID: covidwho-2268434

ABSTRACT

ABSTRACT: Nirmatrelvir/ritonavir (Paxlovid®) consists of a peptidomimetic inhibitor (Nirmatrelvir) of the SARS-CoV-2 main protease and a pharmacokinetic enhancer (Ritonavir). It is approved for the treatment of mild-to-moderate COVID-19. This combination of nirmatrelvir and ritonavir can mediate significant and complex drug-drug interactions (DDIs), primarily due to the ritonavir component. Indeed, ritonavir inhibits the metabolism of nirmatrelvir through cytochrome P450 3A (CYP3A) leading to higher plasma concentrations and a longer half-life of nirmatrelvir. Co-administration of nirmatrelvir/ritonavir with immunosuppressant drugs (ISDs) is particularly challenging given the major involvement of CYP3A in the metabolism of most of these drugs and their narrow therapeutic ranges. Exposure of ISDs will be drastically increased through the potent ritonavir-mediated inhibition of CYP3A, resulting in an increased risk of adverse drug reactions. While a decrease in the dosage of ISDs can prevent toxicity, an inappropriate dosage regimen may also result in insufficient exposure and a risk of rejection. Here we provide some general recommendations for therapeutic drug monitoring (TDM) of ISDs and dosing recommendations when co-administered with nirmatrelvir/ritonavir. Particularly, tacrolimus should be discontinued, or patients should be given a microdose on day-1, while cyclosporine dosage should be reduced to 20% of the initial dosage during the antiviral treatment. Dosages of mammalian target of rapamycin inhibitors (m-TORis) should also be adjusted while dosages of mycophenolic acid and corticosteroids are expected to be less impacted.

5.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2073563

ABSTRACT

Repeated vaccination against SARS-CoV-2 increases serological response in kidney transplant recipients (KTR) with high interindividual variability. No decision support tool exists to predict SARS-CoV-2 vaccination response to third or fourth vaccination in KTR. We developed, internally and externally validated five different multivariable prediction models of serological response after the third and fourth vaccine dose against SARS-CoV-2 in previously seronegative, COVID-19-naïve KTR. Using 20 candidate predictor variables, we applied statistical and machine learning approaches including logistic regression (LR), least absolute shrinkage and selection operator (LASSO)-regularized LR, random forest, and gradient boosted regression trees. For development and internal validation, data from 590 vaccinations were used. External validation was performed in four independent, international validation cohorts comprising 191, 184, 254, and 323 vaccinations, respectively. LASSO-regularized LR performed on the whole development dataset yielded a 20- and 10-variable model, respectively. External validation showed AUC-ROC of 0.840, 0.741, 0.816, and 0.783 for the sparser 10-variable model, yielding an overall performance 0.812. A 10-variable LASSO-regularized LR model predicts vaccination response in KTR with good overall accuracy. Implemented as an online tool, it can guide decisions whether to modulate immunosuppressive therapy before additional active vaccination, or to perform passive immunization to improve protection against COVID-19 in previously seronegative, COVID-19-naïve KTR.

6.
Front Med (Lausanne) ; 9: 936126, 2022.
Article in English | MEDLINE | ID: covidwho-1987508

ABSTRACT

Response to SARS-CoV-2-vaccines in kidney-transplant recipients (KTR) is severely reduced. Heterologous3rd vaccination combining mRNA and vector vaccines did not increase seroconversion at 4 weeks after vaccination, but evolution of antibody levels beyond the first month remains unknown. We have recently completed a randomized-controlled trial on heterologous (Ad26COVS1) vs. homologous (BNT162b2 or mRNA-1273) 3rd vaccination in 201 KTR not developing SARS-CoV-2-spike-protein antibodies following two doses of mRNA vaccine (EurdraCT: 2021-002927-39). Here, we report seroconversion at the second follow-up at 3 months after the 3rd vaccination (prespecified secondary endpoint). In addition, higher cut-off levels associated with neutralizing capacity and protective immunity were applied (i.e., > 15, > 100, > 141, and > 264 BAU/ml). A total of 169 patients were available for the 3-month follow-up. Overall, seroconversion at 3 months was similar between both groups (45 vs. 50% for mRNA and the vector group, respectively; p = 0.539). However, when applying higher cut-off levels, a significantly larger number of individuals in the vector group reached antibody levels > 141 and > 264 BAU/ml at the 3-month follow-up (141 BAU/ml: 4 vs. 15%, p = 0.009 and 264 BAU/ml: 1 vs. 10%, p = 0.018 for mRNA vs. the vector vaccine group, respectively). In line, antibody levels in seroconverted patients further increased from month 1 to month 3 in the vector group while remaining unchanged in the mRNA group (median increase: mRNA = 1.35 U/ml and vector = 27.6 U/ml, p = 0.004). Despite a similar overall seroconversion rate at 3 months following 3rd vaccination in KTR, a heterologous 3rd booster vaccination with Ad26COVS1 resulted in significantly higher antibody levels in responders.

7.
Transpl Int ; 35: 10302, 2022.
Article in English | MEDLINE | ID: covidwho-1938661

ABSTRACT

This article gives a personal, historical, account of the impact of the COVID-19 pandemic on transplantation services. The content is based on discussions held at two webinars in November 2020, at which kidney transplantation experts from prestigious institutions in Europe and the United States reflected on how the pandemic affected working practices. The group discussed adaptations to clinical care (i.e., ceasing, maintaining and re-starting kidney transplantations, and cytomegalovirus infection management) across the early course of the pandemic. Discussants were re-contacted in October 2021 and asked to comment on how transplantation services had evolved, given the widespread access to COVID-19 testing and the roll-out of vaccination and booster programs. By October 2021, near-normal life and service delivery was resuming, despite substantial ongoing cases of COVID-19 infection. However, transplant recipients remained at heightened risk of COVID-19 infection despite vaccination, given their limited response to mRNA vaccines and booster dosing: further risk-reduction strategies required exploration. This article provides a contemporaneous account of these different phases of the pandemic from the transplant clinician's perspective, and provides constructive suggestions for clinical practice and research.


Subject(s)
COVID-19 , Kidney Transplantation , COVID-19/epidemiology , COVID-19 Testing , Humans , Pandemics , SARS-CoV-2 , United States/epidemiology
8.
J Clin Med ; 11(12)2022 Jun 08.
Article in English | MEDLINE | ID: covidwho-1884243

ABSTRACT

The immunogenicity of SARS-CoV-2 vaccines in kidney transplant recipients is limited, resulting in inadequately low serological response rates and low immunoglobulin (Ig) levels, correlating with reduced protection against death and hospitalization from COVID-19. We retrospectively examined the time course of anti-SARS-CoV-2 Ig antibody levels after up to five repeated vaccinations in 644 previously nonresponding kidney transplant recipients. Using anti SARS-CoV-2 IgG/IgA ELISA and the total Ig ECLIA assays, we compared antibody levels at 1 month with levels at 2 and 4 months, respectively. Additionally, we correlated the measurements of the used assays. Between 1 and 2 months, and between 1 and 4 months, mean anti-SARS-CoV-2 Ig levels in responders decreased by 14% and 25%, respectively, depending on the assay. Absolute Ig values and time course of antibody levels showed high interindividual variability. Ig levels decreased by at least 20% in 77 of 148 paired samples with loss of sufficient serological protection over time occurring in 18 out of 148 (12.2%). IgG ELISA and total Ig ECLIA assays showed a strong positive correlation (Kendall's tau = 0.78), yet the two assays determined divergent results in 99 of 751 (13.2%) measurements. IgG and IgA assays showed overall strong correlation but divergent results in 270 of 1.173 (23.0%) cases and only weak correlation of antibody levels in positive samples. Large interindividual variability and significant loss of serological response after 4 months supports repeated serological sampling and consideration of shorter vaccination intervals in kidney transplant recipients.

9.
J Clin Med ; 11(9)2022 May 04.
Article in English | MEDLINE | ID: covidwho-1820307

ABSTRACT

Mortality from COVID-19 among kidney transplant recipients (KTR) is high, and their response to three vaccinations against SARS-CoV-2 is strongly impaired. We retrospectively analyzed the serological response of up to five doses of the SARS-CoV-2 vaccine in KTR from 27 December 2020 until 31 December 2021. Particularly, the influence of the different dose adjustment regimens for mycophenolic acid (MPA) on serological response to fourth vaccination was analyzed. In total, 4277 vaccinations against SARS-CoV-2 in 1478 patients were analyzed. Serological response was 19.5% after 1203 basic immunizations, and increased to 29.4%, 55.6%, and 57.5% in response to 603 third, 250 fourth, and 40 fifth vaccinations, resulting in a cumulative response rate of 88.7%. In patients with calcineurin inhibitor and MPA maintenance immunosuppression, pausing MPA and adding 5 mg prednisolone equivalent before the fourth vaccination increased the serological response rate to 75% in comparison to the no dose adjustment (52%) or dose reduction (46%). Belatacept-treated patients had a response rate of 8.7% (4/46) after three vaccinations and 12.5% (3/25) after four vaccinations. Except for belatacept-treated patients, repeated SARS-CoV-2 vaccination of up to five times effectively induces serological response in kidney transplant recipients. It can be enhanced by pausing MPA at the time of vaccination.

10.
Transpl Int ; 35: 10109, 2022.
Article in English | MEDLINE | ID: covidwho-1792858

ABSTRACT

Background: Antiviral drugs have shown little impact in patient infected with acute respiratory coronavirus 2 (SARS-CoV-2). Especially for immunocompromised persons positive for SARS-CoV-2, novel treatments are warranted. Recently, the U.S. FDA has granted an emergency use authorization (EUA) to two monoclonal antibodies (mAb) targeting the viral spike protein: bamlanivimab and casivirimab and imdevimab. As per the EUA, all SARS-CoV-2 positive organ transplant recipients can receive mAb treatment. Patients and methods: We queried our center's transplant registry to identify SARS-CoV-2 infected recipients treated with single doses of either Bamlanivimab or casivirimab/imdevimab up to May 31, 2021. We analyzed clinical outcomes, renal function and virus-specific antibodies. The co-primary endpoints were hospitalization due to COVID-19 and SARS-CoV-2 RT-PCR negativity. Results: Thirteen patients at a median interval of 55 (IQR, 26-110) months from transplant were treated: 8 with bamlanivimab and 5 with casivirimab/imdevimab. In all, 4/13 (31%) patients were hospitalized at some time, while 11/13 (85%) achieved PCR negativity. 2/4 hospitalized patients received mAb as rescue treatment. Overall mortality was 23%, with one death attributable to transplant-associated lymphoma. All six patients infected with the B 1.1.7 variant were alive at last contact. Conclusion: mAb treatment appears effective when administered early to SARS-CoV-2-infected transplant recipients.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/therapeutic use , Humans , Kidney/physiology , Pancreas , SARS-CoV-2 , Transplant Recipients
11.
JCI Insight ; 7(9)2022 05 09.
Article in English | MEDLINE | ID: covidwho-1765224

ABSTRACT

Transplant recipients exhibit an impaired protective immunity after SARS-CoV-2 vaccination, potentially caused by mycophenolate (MPA) immunosuppression. Recent data from patients with autoimmune disorders suggest that temporary MPA hold might greatly improve booster vaccination outcomes. We applied a fourth dose of SARS-CoV-2 vaccine to 29 kidney transplant recipients during a temporary (5 weeks) MPA/azathioprine hold, who had not mounted a humoral immune response to previous vaccinations. Seroconversion until day 32 after vaccination was observed in 76% of patients, associated with acquisition of virus-neutralizing capacity. Interestingly, 21/25 (84%) calcineurin inhibitor-treated patients responded, but only 1/4 belatacept-treated patients responded. In line with humoral responses, counts and relative frequencies of spike receptor binding domain-specific (RBD-specific) B cells were markedly increased on day 7 after vaccination, with an increase in RBD-specific CD27++CD38+ plasmablasts. Whereas overall proportions of spike-reactive CD4+ T cells remained unaltered after the fourth dose, frequencies were positively correlated with specific IgG levels. Importantly, antigen-specific proliferating Ki67+ and in vivo-activated programmed cell death 1-positive T cells significantly increased after revaccination during MPA hold, whereas cytokine production and memory differentiation remained unaffected. In summary, antimetabolite hold augmented all arms of immunity during booster vaccination. These data suggest further studies of antimetabolite hold in kidney transplant recipients.


Subject(s)
Antimetabolites , COVID-19 Vaccines , COVID-19 , Kidney Transplantation , Antibodies, Viral , Antimetabolites/therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunity, Cellular , Immunity, Humoral , Immunosuppressive Agents/therapeutic use , SARS-CoV-2 , Transplant Recipients , Vaccination
12.
J Clin Med ; 11(6)2022 Mar 18.
Article in English | MEDLINE | ID: covidwho-1760679

ABSTRACT

Immunosuppression increases the risk of severe coronavirus disease 2019 (COVID-19). Morbidity and mortality of this disease in kidney transplant patients are higher than in the general population. As the vaccination response of transplant patients is weak, serological monitoring was performed. In this cohort study, we analyzed the determinants of vaccination response. All patients had no history of COVID-19. With anti-spike IgG monitoring, 148 responders and 415 non-responders were identified. We compared both groups using multivariate analyses of the cohort and a sub-cohort of mycophenolic-acid-treated patients. We investigated the influence of patient characteristics, immunosuppression, and erythrocyte inosine monophosphate dehydrogenase (IMPDH) activity. In responders, the time after transplantation was longer (13.5 vs. 8.5 years), the glomerular filtration rate was higher (56.9 vs. 47.8 mL/min/1.73 m2), and responders were younger (53.0 vs. 57.4 years). Heterologous vaccination was more effective than homologous vaccination. Calcineurin inhibitors plus mycophenolate reduced the seroconversion rate. No seroconversion was observed in belatacept patients. In mycophenolate-treated patients, IMPDH activity was a significantly better predictor of response than mycophenolate dose (AUC 0.84 vs. 0.62, p < 0.001). Immunosuppression strongly affects vaccine response. Modifications to immunosuppression should be considered in order to facilitate this response. Erythrocyte IMPDH activity can be used to guide mycophenolate treatment.

14.
Crit Care Med ; 50(6): 964-976, 2022 06 01.
Article in English | MEDLINE | ID: covidwho-1684855

ABSTRACT

OBJECTIVES: To investigate the effect of extracorporeal cytokine reduction by CytoSorb (CytoSorbents, Monmouth Junction, NJ) on COVID-19-associated vasoplegic shock. DESIGN: Prospective, randomized controlled pilot study. SETTING: Eight ICUs at three sites of the tertiary-care university hospital Charité-Universitätsmedizin Berlin. PATIENTS: COVID-19 patients with vasoplegic shock requiring norepinephrine greater than 0.2 µg/kg/min, C-reactive protein greater than 100 mg/L, and indication for hemodialysis. INTERVENTIONS: Randomization of 1:1 to receive CytoSorb for 3-7 days or standard therapy. To account for inadvertent removal of antibiotics, patients in the treatment group received an additional dose at each adsorber change. MEASUREMENTS AND MAIN RESULTS: The primary endpoint was time until resolution of vasoplegic shock, estimated by Cox-regression. Secondary endpoints included mortality, interleukin-6 concentrations, and catecholamine requirements. The study was registered in the German Registry of Clinical Trials (DRKS00021447). From November 2020 to March 2021, 50 patients were enrolled. Twenty-three patients were randomized to receive CytoSorb and 26 patients to receive standard of care. One patient randomized to cytokine adsorption was excluded due to withdrawal of informed consent. Resolution of vasoplegic shock was observed in 13 of 23 patients (56.5%) in the CytoSorb and 12 of 26 patients (46.2%) in the control group after a median of 5 days (interquartile range [IQR], 4-5 d) and 4 days (IQR, 3-5 d). The hazard ratio (HR) for the primary endpoint, adjusted for the predefined variables age, gender, extracorporeal membrane oxygenation-therapy, or time from shock onset to study inclusion was HR, 1.23 (95% CI, 0.54-2.79); p = 0.63. The mortality rate was 78% in the CytoSorb and 73% in the control group (unadjusted HR, 1.17 [95% CI, 0.61-2.23]; p = 0.64). The effects on inflammatory markers, catecholamine requirements, and the type and rates of adverse events were similar between the groups. CONCLUSIONS: In severely ill COVID-19 patients, CytoSorb did not improve resolution of vasoplegic shock or predefined secondary endpoints.


Subject(s)
COVID-19 , Shock , COVID-19/therapy , Cytokines , Humans , Multiple Organ Failure/therapy , Norepinephrine , Pilot Projects , Prospective Studies , Research Design , Treatment Outcome
15.
J Am Soc Nephrol ; 2021 10 19.
Article in English | MEDLINE | ID: covidwho-1566580

ABSTRACT

Background: Accumulating evidence suggests that solid organ transplant recipients, as opposed to the general population, show strongly impaired responsiveness towards standard SARS-CoV-2 mRNA-based vaccination, demanding alternative strategies for protection of this vulnerable group. Methods: In line with recent recommendations, a third dose of either heterologous ChAdOx1 (AstraZeneca) or homologous BNT162b2 (BioNTech) was administered to 25 kidney transplant recipients (KTR) without humoral response after 2 doses of BNT162b2, followed by analysis of serological responses and vaccine-specific B- and T-cell immunity. Results: 9/25 (36%) KTR under standard immunosuppressive treatment seroconverted until day 27 after the third vaccination, while one patient developed severe COVID-19 infection immediately after vaccination. Cellular analysis seven days after the third dose showed significantly elevated frequencies of viral spike protein receptor binding domain specific B cells in humoral responders as compared to non-responders. Likewise, portions of spike-reactive CD4+ T helper cells were significantly elevated in seroconverting patients. Furthermore, overall frequencies of IL-2+, IL-4+ and polyfunctional CD4+ T cells significantly increased after the third dose, whereas memory/effector differentiation remained unaffected. Conclusions: Our data suggest that a fraction of transplant recipients benefits from triple vaccination, where seroconversion is associated with quantitative and qualitative changes of cellular immunity. At the same time, the study highlights that modified vaccination approaches for immunosuppressed patients still remain an urgent medical need.

16.
J Crit Care ; 67: 126-131, 2022 02.
Article in English | MEDLINE | ID: covidwho-1509976

ABSTRACT

BACKGROUND: We compared filter survival and citrate-induced complications during continuous renal replacement therapy (CRRT) with regional citrate anticoagulation (RCA) in COVID-19 and Non-COVID-19 patients. METHODS: In this retrospective study we included all consecutive adult patients (n = 97) treated with RCA-CRRT. Efficacy and complications of RCA-CRRT were compared between COVID-19 and Non-COVID-19 patients. RESULTS: Mean filter run-time was significantly higher in COVID-19 patients compared to Non-COVID-19 patients (68.4 (95%CI 67.0-69.9) vs. 65.2 (95%CI 63.2-67.2) hours, respectively; log-rank 0.014). COVID-19 patients showed significantly higher activated partial thromboplastin time (aPTT) throughout the CRRT due to intensified systemic anticoagulation compared to Non-COVID-19 patients (54 (IQR 45-61) vs. 47 (IQR 41-58) seconds, respectively; p < 0.001). A significantly higher incidence of metabolic alkalosis, hypercalcemia and hypernatremia, consistent with reduced filter patency and citrate overload, was observed in COVID-19 patients compared to Non-COVID-19 patients (19.1% vs. 12.7%, respectively; p = 0.04). These metabolic disarrangements were resistant to per-protocol adjustments and disappeared after replacement of the CRRT-filter. CONCLUSIONS: RCA-CRRT in COVID-19 patients with intensified systemic anticoagulation provides an adequate filter lifespan. However, close monitoring of the acid-base balance appears warranted, as these patients tend to develop reduced filter patency leading to a higher incidence of citrate overload and metabolic disturbances. TRIAL REGISTRATION (LOCAL AUTHORITY): EA1/285/20 (Ethikkommission der Charité - Universitätsmedizin Berlin); date of registration 08.10.2020.


Subject(s)
COVID-19 , Continuous Renal Replacement Therapy , Anticoagulants/adverse effects , Citrates , Citric Acid/adverse effects , Critical Illness , Humans , Retrospective Studies , SARS-CoV-2
17.
J Am Soc Nephrol ; 32(3): 708-722, 2021 03.
Article in English | MEDLINE | ID: covidwho-1496675

ABSTRACT

BACKGROUND: Late antibody-mediated rejection (ABMR) is a leading cause of transplant failure. Blocking IL-6 has been proposed as a promising therapeutic strategy. METHODS: We performed a phase 2 randomized pilot trial to evaluate the safety (primary endpoint) and efficacy (secondary endpoint analysis) of the anti-IL-6 antibody clazakizumab in late ABMR. The trial included 20 kidney transplant recipients with donor-specific, antibody-positive ABMR ≥365 days post-transplantation. Patients were randomized 1:1 to receive 25 mg clazakizumab or placebo (4-weekly subcutaneous injections) for 12 weeks (part A), followed by a 40-week open-label extension (part B), during which time all participants received clazakizumab. RESULTS: Five (25%) patients under active treatment developed serious infectious events, and two (10%) developed diverticular disease complications, leading to trial withdrawal. Those receiving clazakizumab displayed significantly decreased donor-specific antibodies and, on prolonged treatment, modulated rejection-related gene-expression patterns. In 18 patients, allograft biopsies after 51 weeks revealed a negative molecular ABMR score in seven (38.9%), disappearance of capillary C4d deposits in five (27.8%), and resolution of morphologic ABMR activity in four (22.2%). Although proteinuria remained stable, the mean eGFR decline during part A was slower with clazakizumab compared with placebo (-0.96; 95% confidence interval [95% CI], -1.96 to 0.03 versus -2.43; 95% CI, -3.40 to -1.46 ml/min per 1.73 m2 per month, respectively, P=0.04). During part B, the slope of eGFR decline for patients who were switched from placebo to clazakizumab improved and no longer differed significantly from patients initially allocated to clazakizumab. CONCLUSIONS: Although safety data indicate the need for careful patient selection and monitoring, our preliminary efficacy results suggest a potentially beneficial effect of clazakizumab on ABMR activity and progression.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Graft Rejection/therapy , Interleukin-6/antagonists & inhibitors , Kidney Transplantation/adverse effects , Adult , Allografts , Antibodies, Monoclonal, Humanized/adverse effects , Double-Blind Method , Female , Glomerular Filtration Rate , Graft Rejection/immunology , Graft Rejection/physiopathology , Humans , Infections/etiology , Interleukin-6/immunology , Isoantibodies/blood , Male , Middle Aged , Tissue Donors , Treatment Outcome , Young Adult
18.
Sci Immunol ; 6(60)2021 06 15.
Article in English | MEDLINE | ID: covidwho-1369380

ABSTRACT

Patients with kidney failure are at increased risk for SARS-CoV-2 infection making effective vaccinations a critical need. It is not known how well mRNA vaccines induce B and plasma cell responses in dialysis patients (DP) or kidney transplant recipients (KTR) compared to healthy controls (HC). We studied humoral and B cell responses of 35 HC, 44 DP and 40 KTR. Markedly impaired anti-BNT162b2 responses were identified among KTR and DP compared to HC. In DP, the response was delayed (3-4 weeks after boost) and reduced with anti-S1 IgG and IgA positivity in 70.5% and 68.2%, respectively. In contrast, KTR did not develop IgG responses except one patient who had a prior unrecognized infection and developed anti-S1 IgG. The majority of antigen-specific B cells (RBD+) were identified in the plasmablast or post-switch memory B cell compartments in HC, whereas RBD+ B cells were enriched among pre-switch and naïve B cells from DP and KTR. The frequency and absolute number of antigen-specific circulating plasmablasts in the cohort correlated with the Ig response, a characteristic not reported for other vaccinations. In conclusion, these data indicated that immunosuppression resulted in impaired protective immunity after mRNA vaccination, including Ig induction with corresponding generation of plasmablasts and memory B cells. Thus, there is an urgent need to improve vaccination protocols in patients after kidney transplantation or on chronic dialysis.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunocompromised Host , Kidney Transplantation , Adult , Aged , Aged, 80 and over , Antibodies, Viral/immunology , BNT162 Vaccine , COVID-19/immunology , Female , Humans , Immunity, Humoral/drug effects , Immunity, Humoral/immunology , Male , Middle Aged , Renal Dialysis , SARS-CoV-2 , Transplant Recipients
19.
Front Immunol ; 12: 690698, 2021.
Article in English | MEDLINE | ID: covidwho-1317227

ABSTRACT

Patients with kidney failure have notoriously weak responses to common vaccines. Thus, immunogenicity of novel SARS-CoV-2 vaccines might be impaired in this group. To determine immunogenicity of SARS-CoV-2 vaccination in patients with chronic dialysis, we analyzed the humoral and T-cell response after two doses of mRNA vaccine Tozinameran (BNT162b2 BioNTech/Pfizer). This observational study included 43 patients on dialysis before vaccination with two doses of Tozinameran 21 days apart. Overall, 36 patients completed the observation period until three weeks after the second dose and 32 patients were further analyzed at week 10. Serum samples were analyzed by SARS-CoV-2 specific IgG and IgA antibodies ~1, ~3-4 and ~10 weeks after the second vaccination. In addition, SARS-CoV-2-specific T-cell responses were assessed at ~3-4 weeks by an interferon-gamma release assay (IGRA). Antibody and T cell outcomes at this timepoint were compared to a group of 44 elderly patients not on dialysis, after immunization with Tozinameran. Median age of patients on chronic dialysis was 74.0 years (IQR 66.0, 82.0). The proportion of males was higher (69.4%) than females. Only 20/36 patients (55.6%, 95%CI: 38.29-71.67) developed SARS-CoV-2-IgG antibodies at the first sampling, whereas 32/36 patients (88.9%, 95%CI: 73.00-96.38) demonstrated IgG detection at the second sampling. In a longitudinal follow-up at ~10 weeks after the second dose, the proportion of dialysis patients reactive for anti-SARS-CoV-2-IgG decreased to 27/32 (84.37%, 95%CI: 66.46-94.10) The proportion of anti-SARS-CoV-2 S1 IgA decreased from 33/36 (91.67%; 95%CI: 76.41-97.82) at weeks 3-4 down to 19/32 (59.38; 95%CI: 40.79-75.78). Compared to a cohort of vaccinees with similar age but not on chronic dialysis seroconversion rates and antibody titers were significantly lower. SARS-CoV-2-specific T-cell responses 3 weeks after second vaccination were detected in 21/31 vaccinated dialysis patients (67.7%, 95%CI: 48.53-82.68) compared to 42/44 (93.3%, 95%CI: 76.49-98.84) in controls of similar age. Patients on dialysis demonstrate a delayed, but robust immune response three to four weeks after the second dose, which indicates effective vaccination of this vulnerable group. However, the lower immunogenicity of Tozinameran in these patients needs further attention to develop potential countermeasures such as an additional booster vaccination.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , Renal Dialysis , SARS-CoV-2/immunology , Vaccination/methods , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , BNT162 Vaccine , COVID-19/blood , COVID-19/virology , Female , Follow-Up Studies , Humans , Immunity , Immunoglobulin A/blood , Immunoglobulin G/blood , Longitudinal Studies , Male , Middle Aged , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology
20.
J Clin Invest ; 131(14)2021 07 15.
Article in English | MEDLINE | ID: covidwho-1311203

ABSTRACT

Novel mRNA-based vaccines have been proven to be powerful tools in combating the global pandemic caused by SARS-CoV-2, with BNT162b2 (trade name: Comirnaty) efficiently protecting individuals from COVID-19 across a broad age range. Still, it remains largely unknown how renal insufficiency and immunosuppressive medication affect development of vaccine-induced immunity. We therefore comprehensively analyzed humoral and cellular responses in kidney transplant recipients after the standard second vaccination dose. As opposed to all healthy vaccinees and the majority of hemodialysis patients, only 4 of 39 and 1 of 39 transplanted individuals showed IgA and IgG seroconversion at day 8 ± 1 after booster immunization, with minor changes until day 23 ± 5, respectively. Although most transplanted patients mounted spike-specific T helper cell responses, frequencies were significantly reduced compared with those in controls and dialysis patients and this was accompanied by a broad impairment in effector cytokine production, memory differentiation, and activation-related signatures. Spike-specific CD8+ T cell responses were less abundant than their CD4+ counterparts in healthy controls and hemodialysis patients and almost undetectable in transplant patients. Promotion of anti-HLA antibodies or acute rejection was not detected after vaccination. In summary, our data strongly suggest revised vaccination approaches in immunosuppressed patients, including individual immune monitoring for protection of this vulnerable group at risk of developing severe COVID-19.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , Kidney Transplantation/adverse effects , SARS-CoV-2 , Adult , Aged , Antibodies, Viral/biosynthesis , BNT162 Vaccine , COVID-19 Vaccines/immunology , Case-Control Studies , Cohort Studies , Cytokines/immunology , Female , Humans , Immunity, Cellular , Immunity, Humoral , Immunization, Secondary , Immunoglobulin A/biosynthesis , Immunoglobulin G/biosynthesis , Immunologic Memory , Immunosuppressive Agents/adverse effects , Lymphocyte Activation , Male , Middle Aged , Monitoring, Immunologic , Renal Dialysis/adverse effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Transplantation Immunology
SELECTION OF CITATIONS
SEARCH DETAIL